
Docker, Enabling Continuous (Food) Delivery
@jvaleo #dockercon

• SRE on Platform Team (Cloud Infrastructure)
at GrubHub

• Previously at Dramafever, Google, Apple

• GrubHub since September 2014

Who am I?

‹#›

• GrubHub is the nation's leading online and mobile food
ordering company dedicated to connecting hungry diners
with local takeout restaurants. The company’s online and
mobile ordering platforms allow diners to order directly
from approximately 35,000 takeout restaurants in more
than 900 U.S. cities and London.

• GrubHub’s portfolio of brands includes GrubHub,
Seamless, MenuPages, Allmenus, Restaurants on the
Run, and DiningIn

• In 2014, sent nearly $2 billion in gross food sales to local
takeout restaurants

• Processes an average of nearly 235,000 orders on a
daily basis

• Serves approximately 5.6 million active diners

What’s GrubHub

• SREs and Devs on the same team

• Goal is pretty standard; move code from dev
to production as quick as possible in a safe
repeatable manner

• Share the operation of the system

DevOps @ GrubHub

• Multi-datacenter from the start

• No single point(s) of failure

• Elastically scalable

• Automated and continuous deployments

Architecture Commandments

• Java based micro service architecture

• Cassandra for datastore

• Platform - garçon!

• Provides discovery (Eureka), security, layer
7 routing (Jiujitsu) and service
configuration management (Fig). Built on
common frameworks

• Deployment/Automation?

Architecture

Deployment Tools For Consideration

• rsync/http/ssh/somethingotheracronym

• “Traditional” artifact store

• Golden AMI/Image per service & version

• Docker

Deployment Tools For Consideration

• Performance overhead

• Are tools production ready?

• How does this help us enable Continuous
Deployment over a more “traditional”
deployment methodology?

Questions Around Docker

• Extensive load testing run against services
running in Docker

• Minimal/no latency added

• No real system overhead

Performance Overhead

Performance Overhead

• “Built-in” tools are ready to run in production

• Lots of ways to build and manage images,
need to make smart decisions upfront

• Container orchestration tools are mostly there

• Now what?

Are Tools Ready?

Are Tools Ready?

• Docker containers built on every integrate to
master, service and test container

• Pushes to local registry backed by S3

• Kicks off deployment job

• Starts instances with local registry, pulls
container and runs

• Runs instance test, service level test, “big-test”

• Outputs results of tests back to user as well as
service logs to log aggregator

Solution - “Busboy”

• Able to run entire stack locally in the same
way we run in production

• Don’t worry as much about host OS

• Docker APIs make it “easy” to manipulate
physical data centers and cloud in the same
manner

• Helps us move away from deployments and
focus on code

• Lots of (automated) deployments

How Does Docker Help Us?

How Does This Help Us?

• Managing Dockerfiles and images

• Registry considerations

• Not everything needs to run in Docker

• Troubleshooting in production

Lessons Learned

• Container orchestration tools

• Docker 1.6 with new registry

What’s Next?

Thank you
Jeff Valeo
jvaleo@grubhub.com
@jvaleo #dockercon

mailto:jvaleo@grubhub.com

